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Abstract - This paper is aimed at presenting a single phase transient heat conduction model that mimics the effects of phase change 
present in paraffin wax under varying ambient temperatures for cooling application. The low energy encapsulated PCM-paraffin wax 
with initial temperature at 20oC, is modelled and numerically studied using the explicit finite difference method (FDM) and the effective 
heat capacity method (EHC). Numerical results obtained from Matlab showed that the melting temperature of the modelled paraffin 
varies but falls within the range of 23 – 26oC.The combination of the FDM and EHC numerical methods prove suitable for simplification 
and solving moving boundary phase change problems. Numerical results showed that encapsulating paraffin wax with high density 
polyethylene shells and exposing these capsules to ambient temperature conditions is capable of causing significant drop in ambient 
temperatures from 22 – 31.5oC to 14.2 – 20.3oC representing temperature depressions of 7.84 – 11.24oC.  
Keywords - Phase Change, Mathematical Model, Stefan Problem, Nodal Temperature, Energy Balance, Finite difference, Paraffin 
wax. 

——————————      —————————— 

1. INTRODUCTION 

Phase change materials absorb heat from a high 

surrounding temperature fluid and releases that heat 

to a lower temperature fluid hence, causing a drop in 

temperature of the high temperature fluid. The 

application of a particular PCM is largely determined 

by its phase change temperature which can 

comfortably drop ambient temperature to levels used 

for space air conditioning. Phase change problems also 

referred to as Stefan or moving boundary problems are 

considered as nonlinear phenomenon because the 

phase change interface moves continuously during the 

melting or solidification processes and is usually 

difficult to track [8]. The aim of this paper is to use the 

energy balance method (EBM) to develop a single 

phase generalized heat conduction model that mimics 

melting and solidification effects of phase change 

present in PCMs and solve the model using FDM and 

EHC methods. The modelled PCM capsules are 

exposed to varying ambient temperatures for possible 

energy storage and cooling. The PCM used in this 

study is commercially available low energy paraffin 

wax encapsulated with high density polyethylene 

 (HDPE) spherically shaped capsules and maintained 

at 20oC initial temperature. 
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The complexity of phase change problem is mainly a 

result of this unknown location of the phase change 

interface trajectory [3]. Phase change materials 

encapsulated in spherical geometries have attracted 

much attention for more than a century. This great 

interest is due to its direct relevance to thermal energy 

storage and other thermal management applications. 

Authors [1], presented a numerical and experimental 

study of solidification in a spherical shell. In their 

numerical simulations the PCM-air system was 

described using volume of fluid (VOF) model and for 

the phase change region inside the PCM, the enthalpy-

porosity approach was used, where by the porosity in 

each cell is set equal to the liquid fraction in that cell 

and the porosity was assumed zero inside fully solid 

regions. The numerical results were obtained using 

FLUENT 6.2 software and convergence of solution 

was checked at each time step with convergence 

criterion of 10-5. Similarly, a simple, rapid and 

generalized model, based on the energy balance 

technique, for solving heat transfer problems in phase 

change materials of liquid/solid type was formulated 

in [7]. The author considered the effect of natural 

convection in a rectangular cavity during sensible 

cooling and fusion processes. The results showed that 

the model based on the finite element method during 

the solidification process presented a very prolonged 

computer time (70h) as opposed to (>lh) by the energy 

balance technique.  Authors [6], pointed that most 

precise analytical solution for a one-dimensional 
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phase change problem was originated by Neumann 

with different boundary conditions. Other analytical 

methods include methods like the quasi-stationary 

approximation, perturbation methods, the Megerlin 

method and the Heat-balance-integral method. The 

authors stated that the aforementioned methods are 

only suitable for calculating semi-finite or in-finite 

storages, however they added that real storages are 

finite and should be handled three or at least two-

dimensionally so as to achieve a sufficiently accurate 

solution. The interfacial tracking method used by 

Zang and Yang [10] was developed for conduction-

controlled melting and solidification problems which 

utilizes the advantages of both deforming and fixed 

grid methods. Numerical methods for solving PCM 

problems range from finite element method (FEM), 

finite difference method(FDM), finite volume 

method(FVM), variable grid method(VGM), Enthalpy 

method, fixed grid method etc. Caldwell and kwan 

[11] compared several effective methods for the 

numerical solution of one-dimensional Stefan 

problems. They examined the enthalpy method, 

boundary immobilization method, perturbation 

method, nodal integral method and the heat balance 

integral method. The difference among these methods 

is seen in the discretization approach but common to 

all the methods is that the phase change phenomenon 

has to be modeled separately due to the nonlinear 

nature of the problem. In the fixed grid method (FGM) 

as reported in [5], the phase change interface fitting 

was totally eliminated by formulating the energy 

equation in terms of the effective heat capacity where 

the fixed grid size and fixed time step can be employed 

to generate a single heat model equation used to 

predict the thermal profile of the PCM. Costa et al [2] 

used the enthalpy formulation with fully implicit finite 

difference method to analyse numerically the thermal 

performance of latent heat storage, modelled in both 

(2-D) conduction and (1-D) convection heat transfer 

modes. The authors concluded that the method is 

useful for designing thermal stores.  

2. PROBLEM FORMULATION 
The following assumptions are used to simplify the 

analysis:  

1. Ambient air, Paraffin wax and HDPE shell 

temperature varies along the radial direction 

of each PCM capsule;Tf = Tf(r) , Tw =

Tw(r) and Tp = Tp(r)  

2. One dimensional transient state is considered 

for the paraffin wax and HDPE shell 

hence; 
∂T

∂θ
= 0,

∂T

∂∅
= 0,

∂T

∂τ
≠ 0

 
 

3. No internal heat generation in the PCM 

capsules;∅ = 0 

4. The PCM regime is assumed to be solid 

dominated, therefore the convective heat 

transfer during phase change in the solid-

liquid or liquid-solid interface is neglected; 

hw = 0 

5. The PCM capsules are exposed to air 

(incompressible Newtonian fluid )flowing 

through an axial flow fan at varying ambient 

temperatures Tf ; ρf = 0 

6. The momentum heat, fluid and mass transfer 

analysis is not considered.  

7. The densities of the HDPE shells and paraffin 

wax are constant. 

8. Radiant heat transfer coefficient between the 

capsules is negligible. 

9. Thermophysical properties of HDPE shells 

and paraffin wax do not vary with time.  

 

 

 
 

Fig.1: Nodal Network of 44 paraffin wax capsules in the axial flow 

direction. 
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3. GOVERNING EQUATIONS 
To solve the PCM problem, it requires consideration of 

already stated assumptions hence a one-dimensional 

single phase transient heat conduction equation is 

developed for PCM capsule nodes 0 – 43, which 

interacts with the HDPE spherical shell boundaries. 

Mathematical the energy balance can be  derived using 

the formula; Energy transferred from HDPE capsule 

walls to internal PCM nodes of control volume AsΔr 

equals energy increase in the paraffin wax within the 

control volume AsΔr due to energy storage. 

 
Fig. 2: Energy balance analysis of paraffin wax about internal 
center nodes 0 - 43  

The applicable energy equation can be expressed as: 

ℓwCpwAs
∂Tw

∂t
= ∅ +

 kw

r2 As
∂

∂r
 
r2 ∂(Tp0

−Tw0,i/2)

∂r
+

 kw

r2 As
∂

∂r

r2 ∂(Tp1−Tw0,i/2)

∂r
 + As ∂r                              (1)                                                                                 

Applying assumption 3, and simplifying equation (1) 

yields; 

ℓwCpwAs
∂Tw

∂t
=

 kw

r
As  

∂2(r(𝑇𝑝0−Tw0,i/2))

∂r2 +

 kw

r
As

∂2(r(Tp1−Tw0,i/2))

∂r2 + As ∂r                                (2)                                                                              

Initial Conditions: 

Tw (rh,0) = Twinitial = Tp initial                                (3) 

Tw (r0,0) = Twinital = Tp intial                              (4) 

T
w (

rh
2

,0)
= Twinital = Tp initial                                 (5)                                                                                                                                                                                             

Boundary Conditions: 

  Tw (r0,t) = −
hw

kw
[Tp(0,t) − T

w(
r0
2

,t)
]                    (6)                                                                        

  Tw (rh,t) = −
hw

kw
[Tp(43,t) − T

w(
rh
2

,t)
]                     (7)  

The initial and boundary conditions in equation (6) - 

(7) can be used to solve equation (2) analytically. To 

simplify the governing equation (2) for numerical 

approach, we define the following applicable 

dimensionless parameters. 

r∗ =
r

rh
  ,τ∗ =

t

t0
, θ =

T−Tw

Tp−Tw
  

Where τo  is some arbitrary time interval, r is radius at 

any internal node points on the PCM capsule and rh 

is the HDPE exit capsule external node, τ is the 

dimensionless time. 

In figure 1, the nodal position 
r0

2
=

i

2
 represents the 

mid-point of each capsule where ; r = node 0,ro = node 

1, r1 = node 2,….rh = node 44 

Let Tw = Tp0
− Tw0,i/2 and  Tp = Tp1

− Tw0,i/2 

in equation (2) for simplicity thus substituting the 

dimensionless parameters into equation (2) gives 

ℓwCpwAst0r∗rh
∂Tw

∂τ
= kwAst0  

∂(T−Tw)+Tp

∂r∗ ∂θ
+

kwAst0r∗rh
∂(T−Tw)+Tw

∂r∗ ∂θ
+ Ast0r∗rh ∂r                  (8)                                                                                   

Dividing through by Ast0r∗rh gives 

ℓwCpw
∂Tw

∂τ
=

kw

r∗rh

∂(T−Tw)+Tp

∂r∗ ∂θ
+

kw

r∗rh

∂(T−Tw)+Tw

∂θ
+

∂r

r∗rh
                                                                                    (9)                                                                   

Dividing equation (9) through by kw and multiplying 

by ∝w=
kw

ℓwCpw
 gives 

∂Tw

∂τ
=

∝w

r∗rh

∂(T−Tw)+Tp

∂r∗ ∂θ
+

∝w

r∗rh

∂(T−Tw)+Tw

∂r∗ ∂θ
+

∝w
∂r

r∗rh
                                                                         (10)                                            

By order of magnitude analysis of equation (10) we 

compare necessary terms, hence there’s no 

justification to neglect a term in preference to the 

other. Also, Substituting Tw = Tp0
− Tw0,i/2 ,  

Tp = Tp1
− Tw0,i/2 and θ =

T−Tw

Tp−Tw
 back to equation 

(10) yields  

∂Tw

∂τ
=

∝w

r∗rh

∂(Tp0−Tw0,i/2)

∂r∗ +
∝w

r∗rh

∂(Tp1−Tw0,i/2)

∂r∗ +

∝w
∂r

r∗rh
                                                                                             (11) 

Multiplying through by 
r∗rh

∝w
 gives 

r∗rh

∝w

∂Tw

∂τ
=

∂(Tp0−Tw0,i/2)

∂r∗ +
∂(Tp1−Tw0,i/2)

∂r∗ + ∂r   (12)                                                                                                                                                          

Equation (12) is multiplied by ∝w=
kw

ℓwCpw
 to yield  

∂Tw

r ∂τ∙
=

kw

ℓwCpw

∂(Tp0−Tw0,i/2)

∂r∗ +

kw

ℓwCpw

∂(Tp1−Tw0,i/2)

∂r∗ +
kw

ℓwCpw
∂r                             (13)                                                                               

Rearranging equation (13) gives 
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kw

ℓwCpw

∂(Tp0−Tw0,i/2)

∂r∗ +
kw

ℓwCpw

∂(Tp1
−Tw0,i/2)

∂r∗ =

∂Tw

r ∂τ∙
−

kw

ℓwCpw
∂r                                                           (14)                                               

Multiplying equation (14) by  r∗ gives 
kw

ℓwCpw
(Tp0

− Tw0,i/2) +
kw

ℓwCpw
(Tp1

− Tw0,i/2) =

∂Twr∗

∂τ∙
−

r∗kw ∂r

ℓwCpw
                                                             (15)                                                                                

Discretizing equation (15) using the simple explicit 

and first-order finite difference formulation gives: 
kw 

ℓwCpw
 (Tpo,i

n − Two,i/2
n )  +  

kw 

ℓwCpw
 (Tp1,i+1

n −

Two,i/2
n ) =  

Two,i/2
n+1 −Two,i/2

n

∆t
∆r2  −

kw∆r2  

ℓwCpw
       (16)                                                                                 

Collecting like terms and multiplying through by 
ℓwCpw 

kw
  gives 

Tpo,i
n − 2 Two,i/2

n + Tp1,i+1
n =  

ℓwCpw∆r2  

kw∆t
 (T

wo,
i

2

n+1 −

 T
wo,

i

2

n ) −  ∆r2                                                           (17)                                                                          

Further rearranging gives 

Tpo,i
n − 2 T

wo,
i

2

n +  Tp1,i+1
n + ∆r2 =

  
ℓwCpw∆r2  

kw∆t
 (T

wo,
i

2

n+1 −  T
wo,

i

2

n )                                    (18)                                                                          

Hence, equation (18) becomes 

Tpo,i
n − 2 T

wo,
i

2

n +  Tp1,i+1
n + ∆r2  =

 
∆r2  

αw∆t
 (Two,i/2

n+1 −  Two,i/2
n )              (19)                                                           

Multiplying equation (19) by 
αw∆t  

∆r2  gives  

 αw∆t 

∆r2  Tpo,i
n −  

 2αw∆t 

∆r2  T
wo,

i

2

n +  
αw∆t 

∆r2   Tp1,i+1
n +

αw∆t =  T
wo,

i

2

n+1 − T
wo,

i

2

n                                               (20)                                                                    

Rearranging equation (20) gives 

Two,i/2
n+1 − Two,i/2

n =
 αw∆t 

∆r2  Tpo,i
n − 

 2αw∆t 

∆r2  Two,i/2
n +

 
αw∆t 

∆r2   Tp1,i+1
n + αw∆t                                                (21)                                                                                                        

Where  Fo =  
αw∆t  

∆r2  is the Fourier number so that 

equation (21) becomes  

Fo (Tpo,i
n + Tp1,i+1

n + αw∆t) +  (1 −

2Fo)  Two,i/2
 n =  Two,i/2

 n+1                           (22)                                                          

Rearranging equation (22) gives 

Two,i/2
 n+1 = Fo (Tpo,i

n + Tp,i+1
n + αw∆t) + (1 −

2Fo)  Two,i/2
 n                                               (23)                                                        

Applying the stability criterion, requires that the 

coefficient Two,i/2
 n  be greater than or equal to zero so 

that ∆𝑡 – simulation time is selected to be well within 

the stability limit which corresponds to the value of  Fo 

hence from the stability criterion equation 

 (1 − 2Fo)Fo ≥ O; Fo ≤  
1

2
 ; ∆t =   

Fo∆r2

αw
 ≈   1hr. 

; Fo  =   
αw∆t

∆r2 = 0.49    

When substituting parameters for ∆r2, Fo and αw for 

convergence and stability of numerical results, the 

minimum permissible value for the computation time 

interval is  Δt ≈ 1hr. 

By substituting Fo into equation (23) gives 

Two,i/2
 n+1 = 0.49  (Tpo,i

n + Tp1,i+1
n +

kw 

ℓwCpw
∆t) +

0.02  Two,i/2
 n                                (24) 

Where Cpw is the specific heat capacity of paraffin 

wax with melting and solidification boundary 

conditions stated as follows: 

Cpw (solid) =
1800kJ

kg
K , T

wo,
i
2

n < 20. 99oC , ℓw = 850 kg/m3 

Cpw (solid−liquid) =
18,067kJ

kg
K , 20. 99oC ≤

 Two,i/2
n ≤ 27. 99oC, ℓw =  850/780kg/m3  

Cpw(liquid)  =   2400
kJ

kg
K , T

wo,
i
2

n > 27. 99oC, ℓw = 780
kg

m3 

Source: [6]  

Equation (24) is the generalized single phase heat 

conduction model used to predict phase change 

phenomenon at node 0 and can be written for nodes 0 

– 43 at new time steps forming a set of N-algebraic 

linear equations solvable using MATLAB. The 

Authors [6], obtained this boundary conditions based 

on their correlation of effective heat capacity which 

states that the effective heat capacity of a material Ceff 

is directly proportional to the stored and released 

energy during phase change and also to the specific 

heat capacity but inversely proportional to the width 

of the solidification temperature range. 

            Ceff =
L

(Tw2−Tw1)
+ Cp                                  (25) 

Where L is the latent heat of fusion, Tw1 is the 

temperature where melting or solidification begins 

and Tw2 is the temperature where the paraffin is totally 

melted or solidified [6]. This method can be applied to 

equation (25) and values of Cpw for liquid, solid and 

solid-liquid phases are obtained for fixed temperature 

conditions. Thermophysical properties of 

commercially available paraffin and HDPE materials 

where used to solve equation (6) as detailed in [9]. 
3.1 GOVERNING EQUATION FOR HDPE 

INTERNAL NODES 1-43 IN TRANSIENT 
MODE 
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The energy balance about HDPE internal capsule 

nodes 1-43 at transient state is expressed 

mathematically, as the sum of heat quantity 

transferred by conduction from node 1 to node 2 

across capsule space Δr and heat transfer by 

conduction from node 3 to node 2 across capsule space 

Δr equals rise in temperature at node 2 within the 

control volume AsΔr due to energy accumulation at 

node 2. The governing applicable equation can be 

written as 

ℓpCppAs
∂Tp

∂t
= ∅ +

 kp

r2 As
∂

∂r
 
r2 ∂(Tp1−Tp2)

∂r
+

 kp

r2 As
∂

∂r

r2 ∂(Tp2−Tp3)

∂r
                                                  (26)                                                                             

By applying assumptions, setting the initial and 

boundary conditions equation (26) is either solved 

analytically or numerically. The numerical solution for 

equation (27) is expressed as   

Tp1,i+1
n+1 =  0.499 (Tpo,i

n +  Tp2,i+2
  n ) +  2 ∗

 10−3  Tp1,i+1
n                                              (27)  

Equation (27) is the numerical algorithm use to predict 

the temperature at node 1 and can be written for nodes 

2 - 43 at new time steps forming a set of N algebraic 

linear equations. 
3.2 GOVERNING EQUATION FOR HDPE 

EXTERNAL NODES IN TRANSIENT MODE  

The energy balance about HDPE external nodes 0 and 

44 within the control volume As∆z is expressed 

mathematically, as the sum of the heat transfer by 

convection from ambient air flowing through an axial 

fan to node 0 and heat transfer by conduction from 

node 1 to node 0 within control volume As∆z which 

equals  the rate at which the shell temperature raises 

at node 0 within the control volume 
As∆z

2
 due to the 

energy accumulation at that node. The governing 

equation is thus derived for nodes 0 and 44 and is 

given as 

ℓpCppAs
∂r

2
  

∂Tp

∂t
=

 kp

r2 As
∂

∂r
 
r2 ∂(Tp1−Tp0)

∂r
+

hfAs(Tf0 − Tp0)                                                           (28)                                                  

By setting the initial and boundary conditions, 

equation (28) is either solved analytically or 

numerically. The numerical solution for equation (28) 

is expressed as    

 Tpo,i
  n+1 = 0.98 (Tp1,i+1

 n + 1.52 ∗ 10−4  Tfo,i
  n ) +

 3.3 ∗  10−4  Tpo,i
  n                                                   (29)                                                                              

Equation (29) can be used to predict the temperature 

fluctuations of nodes 0 and 44 only and can be written 

for new time steps forming a system of N-algebraic 

linear equations.  

4. RESULTS AND DISCUSSION 
The single heat conduction numerical transient model 

developed in equation (24) has the capability to predict 

the effects of phase change present in solid-liquid 

paraffin wax where the melt fraction regime is 

assumed as conduction dominated. A combination of 

the explicit-first order finite difference (FDM) and the 

effective heat capacity (EHC) methods was adopted as 

numerical methods used in discretizing and solving 

the PCM equation. It is the authors view that all 

numerical predictions derived in this study, give 

considerable estimation of melting and solidification 

processes. The graph in figures 3-8 were plotted in 

EXCEL using numerical results obtained from Matlab 

and shows the PCM-paraffin wax temperature 

behavior at nodes 0,20 and 43 undergoing phase 

change from solid sensible heating mode to the latent 

melting transition mode to solidification mode. The 

graphs also showed the HDPE temperature profile of 

the exist capsule node 44 and a significant drop in 

ambient temperatures from initial values of 22 – 31.5oC 

to final values of 14.2 – 20.3oC for 6 days, which 

represents temperature depressions of 7.84 – 11.24oC. 

The melting /phase change temperature of the 

modelled paraffin wax varies but falls within the range 

of 23 – 26oC and the solid sensible heating and the 

latent transition modes occurred between 12am – 2am 

while the solidification mode starts immediately till 

12am, the next simulation day. 
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Fig.3: Graph of temprature against time for Day 1. 

Fig.4: Graph of temprature[°C]against time for Day 2. 

Fig. 5: Graph of temprature [°C] against time for Day 3. 

Fig. 6: Graph of temprature[°C] against time for Day 4. 
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Fig. 7: Graph of temprature[°C] against time for Day 5. 

 
Fig. 8: Graph of temprature against time for Day 6.  

 

 

 

5. CONCLUSION 

The formulation of a single phase transient heat 

conduction model, to predict the performance of 

encapsulated phase change material under varying 

ambient temperatures has been successfully carried 

out and was necessary to solve the “moving 

boundary” phase change problem. The results 

obtained are simplified energy models analyzed to 

mimic the effects of phase change present in solid-

liquid PCMs where the melt fraction regime is 

assumed as conduction dominated. In this paper, it 

can be established that the combination of the explicit-

first order finite difference method (FDM) and the 

effective heat capacity method (EHC) used in 

discretizing the PCM energy equation is suitable for 

simplification and solving of the moving boundary 

phase change problems. The numerical results also 

showed that encapsulating paraffin wax with high 

density polyethylene shells and exposing these 

capsules to varying ambient temperatures, is useful 

for significant cooling application. 
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